LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metabolically engineered rice biomass and grain using genes associated with lipid pathway show high level of oil content.

Photo from wikipedia

Increasing lipid content using metabolic engineering methods in different parts of plant, including, leaves and stem can be considered as an innovative platform for achieving more energy and biofuel in… Click to show full abstract

Increasing lipid content using metabolic engineering methods in different parts of plant, including, leaves and stem can be considered as an innovative platform for achieving more energy and biofuel in more green habits. Two key enzymes, including, diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) catalyze the final step of TAG assembly. WRINKLED1 (WRI1) is one of the important transcription factors which regulate the fatty acid biosynthesis network and TAG accumulation by balancing carbon flux between carbohydrates and lipids. In addition, oleosin encoding gene (OLE) can protect TAGs from degradation by packing into oil bodies. In the current study, four important genes involved in TAG assembly and protection (i.e., AtDGAT1 and AtPDAT, AtWRI1, and AtOle) were overexpressed under a constitutive promoter in rice crop. TAG content of transgenic seeds increased significantly (P ≤ 0.05) by 26% in compared with those of control plants. Oleic and palmitic acid contents were significantly increased by 28% (from 32 to 41) and 27% (11 to 14) in seeds of transgenic plants in compared with controls, respectively. Our results showed an increase in the total grain and leaf oil contents by 70% (from 1.1 to 1.87%) and 22.5% (from 1.88 to 2.3%) in the metabolically engineered lines, respectively. This is the first report of transformation in rice for enhancing oil content and energy density in its seeds and vegetative parts. Such metabolically engineered crops would be cultivated for production much more oils in seeds and straw for food and biodiesel consequently.

Keywords: rice; oil content; content; metabolically engineered; grain; oil

Journal Title: Molecular biology reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.