BACKGROUND The main purpose of this study was to investigate the effect of D-serine (DS) and Dizocilpine (MK-801) on the proliferation of spermatogonial stem cells (SSCs) in two-dimensional (2D) and… Click to show full abstract
BACKGROUND The main purpose of this study was to investigate the effect of D-serine (DS) and Dizocilpine (MK-801) on the proliferation of spermatogonial stem cells (SSCs) in two-dimensional (2D) and three-dimensional (3D) culture systems. METHODS AND RESULTS The SSCs of male NMRI mice were isolated by enzymatic digestion and cultured for two weeks. Then, the identity of SSCs was validated by anti-Plzf and anti-GFR-α1 antibodies via immunocytochemistry (ICC). The proliferation capacity of SSCs was evaluated by their culture on a layer of the decellularized testicular matrix (DTM) prepared from mouse testis, as well as two-dimensional (2D) with different mediums. After two weeks of the initiation of proliferation culture on 3D and 2D medium, the pre-meiotic at the mRNA and protein levels were evaluated via qRT-PCR and flow cytometry methods, respectively. The results showed that the proliferation rate of SSCs in 3D culture with 50 mM glutamic acid and 20 mM D-serine was significantly different from other groups after 14 days treatment. mRNA expression levels of promyelocytic leukemia zinc finger (Plzf) in 3D cultures supplemented by 20 mM D-serine and 50 mM glutamic acid were considerably higher than the 3D control group (p < 0.001). The flow cytometry analysis revealed that the amount of Plzf in the 2D-culture groups of SSCs with 20 mM MK-801 was considerably lower compared to the 2D-culture control group (p < 0.001). CONCLUSIONS This study indicated that decellularized testicular matrix supplemented with D-serine and glutamic acid could be considered a promising vehicle to support cells and provide an appropriate niche for the proliferation of SSCs.
               
Click one of the above tabs to view related content.