Epilepsy is manifested by intermittent convulsions and alterations in consciousness. This disorder has serious effects on daily functions and physical and mental health of affected patients. A variety of temporary… Click to show full abstract
Epilepsy is manifested by intermittent convulsions and alterations in consciousness. This disorder has serious effects on daily functions and physical and mental health of affected patients. A variety of temporary irregularities in the function of brain can results in epilepsy. The molecular mechanism of epilepsy and the underlying causes of abnormal apoptotic responses in neurons, dysregulation of regenerative mechanisms in glial cells and abnormal immune reactions in the context of epilepsy are not clear. microRNAs (miRNAs) as important regulators of cell apoptosis as well as regenerative and immune responses have been shown to affect pathologic events in epilepsy. In the current review, we aimed at defining the role of miRNAs in the pathophysiology of epilepsy. We have listed dysregulated miRNAs in animal models of epilepsy and human subjects. miR-25-3p, miR-494, miR-139-5p, miR-101a-3p, miR-344a, miR-129, miR-298 and miR-187 are among down-regulated miRNAs in epilepsy. Moreover, expressions of miR-132, miR-146a, miR-181a and miR-155 have been reported to be increased in epilepsy. A number of genetic variants within miRNAs can affect risk of epilepsy. We discuss the role of miRNAs in the development of epilepsy.
               
Click one of the above tabs to view related content.