LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

GSK-3β inhibition protects human nucleus pulposus cell against oxidative stress-inducing apoptosis through mitochondrial pathway.

Photo by elisa_ventur from unsplash

BACKGROUND Oxidative stress in the intervertebral disc leads to nucleus pulposus (NP) degeneration by inducing cell apoptosis. However, the molecular mechanisms underlying this process remain unclear. Increasing evidence indicates that… Click to show full abstract

BACKGROUND Oxidative stress in the intervertebral disc leads to nucleus pulposus (NP) degeneration by inducing cell apoptosis. However, the molecular mechanisms underlying this process remain unclear. Increasing evidence indicates that GSK-3β is related to cell apoptosis induced by oxidative stress. In this study, we explored whether GSK-3β inhibition protects human NP cell against apoptosis under oxidative stress. METHODS AND RESULTS Immunofluorescence staining was used to show the expression of GSK-3β in human NP cells (NPCs). Flow cytometry, mitochondrial staining and western blot (WB) were used to detect apoptosis of treated NPCs, changes of mitochondrial membrane potential and the expression of mitochondrial apoptosis-related proteins using GSK-3β specific inhibitor SB216763. Co-Immunoprecipitation (Co-IP) was used to demonstrate the interaction between GSK-3β and Bcl-2. We delineated the protective effect of GSK-3β specific inhibitor SB216763 on human NPCs apoptosis induced by oxidative stress in vitro. Further, we showed SB216763 exert the protective effect by preservation of the mitochondrial membrane potential and inhibition of caspase 3/7 activity during oxidative injury. The detailed mechanism underlying the antiapoptotic effect of GSK-3β inhibition was also studied by analyzing mitochondrial apoptosis pathway in vitro. CONCLUSIONS We concluded that the GSK-3β inhibitor SB216763 protected mitochondrial membrane potential to delay nucleus pulposus cell apoptosis by inhibiting the interaction between GSK-3β and Bcl-2 and subsequently reducing cytochrome c(Cyto-C) release and caspase-3 activation. Together, inhibition of GSK-3β using SB216763 in NPCs may be a favorable therapeutic strategy to slow intervertebral disc degeneration.

Keywords: apoptosis; inhibition; oxidative stress; gsk; cell

Journal Title: Molecular biology reports
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.