LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Online Healthcare Information Adoption Assessment Using Text Mining Techniques

Photo by bruno_nascimento from unsplash

Online healthcare community discussion forums facilitate patients and healthcare seekers to exchange knowledge on health-related issues. Mining the enormous volume of the user generated contents in these forums may provide… Click to show full abstract

Online healthcare community discussion forums facilitate patients and healthcare seekers to exchange knowledge on health-related issues. Mining the enormous volume of the user generated contents in these forums may provide valuable information regarding the health. The contribution of the responses in par with the question asked needs to be analyzed to provide meaningful solutions. Among the answers given by the repliers the answer that contributes knowledge for the health seeker or patient needs to be identified by analyzing the contents of the replies. The knowledge contribution of the reply is measured using the metrics such as Quality of information, Emotional support, and Source Trustworthiness, Replier Competition and Recipient Involvement. A knowledge Contribution Model proposed in this research work aims to determine the answers that could be adopted from the set of answers provided for each question. The pregnancy data from health-care community, Medhelp, is taken-up for analysis. Using Knowledge contribution model, the most influential answer that may be adopted from the given answers is determined by analyzing contents of the answers using text mining techniques. The SVM-RBF Kernel classification algorithm is applied to categorize the answers as adopted and non-adopted from the evaluated metrics.

Keywords: online healthcare; health; mining techniques; using text; text mining; information

Journal Title: Mobile Networks and Applications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.