LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Learning Based Resources Allocation for Internet-of-Things Deployment Underlaying Cellular Networks

Photo from wikipedia

Resources allocation (RA) is a challenging task in many fields and applications including communications and computer networks. The conventional solutions of such problems usually come with a time and memory… Click to show full abstract

Resources allocation (RA) is a challenging task in many fields and applications including communications and computer networks. The conventional solutions of such problems usually come with a time and memory cost, especially for massive networks such as Internet-of-Things (IoT) networks. In this paper, two RA deep network models are proposed for enabling a clustered underlay IoT deployment, where a group of IoT nodes are uploading information to a centralized gateway in their vicinity by reusing the communication channels of conventional cellular users. The RA problem is formulated as a two-dimensional matching problem, which can be expressed as a traditional linear sum assignment problem (LSAP). The two proposed models are based on the recurrent neural network (RNN). Specifically, we investigate the performance of two long short-term memory (LSTM) based architectures. The results show that the proposed techniques could be used as replacement of the well-known Hungarian algorithm for solving LSAPs due to its ability to find the solution for the problems with different sizes, high accuracy, and very fast execution time. Additionally, the results show that the obtained accuracy outperforms the state-of-the-art deep network techniques.

Keywords: deployment; based resources; resources allocation; deep learning; internet things; learning based

Journal Title: Mobile Networks and Applications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.