Social media has evolved into one of the most important channels to share micro-videos nowadays. The sheer volume of micro-videos available in social networks often undermines users’ capability to choose… Click to show full abstract
Social media has evolved into one of the most important channels to share micro-videos nowadays. The sheer volume of micro-videos available in social networks often undermines users’ capability to choose the micro-videos that best fit their interests. Recommendation appear as a natural solution to this problem. However, existing video recommendation methods only consider the users’ historical preferences on videos, without exploring any video contents. In this paper, we develop a novel latent genre aware micro-video recommendation model to solve the problem. First, we extract user-item interaction features, and auxiliary features describing both contextual and visual contents of micro-videos. Second, these features are fed into the neural recommendation model that simultaneously learns the latent genres of micro-videos and the optimal recommendation scores. Experiments on real-world dataset demonstrate the effectiveness and the efficiency of our proposed method compared with several state-of-the-art approaches.
               
Click one of the above tabs to view related content.