This paper presents a COrner based REGistration technique for multimodal images (referred to as COREG). The proposed technique focuses on addressing large content and scale differences in multimodal images. Unlike… Click to show full abstract
This paper presents a COrner based REGistration technique for multimodal images (referred to as COREG). The proposed technique focuses on addressing large content and scale differences in multimodal images. Unlike traditional multimodal image registration techniques that rely on intensities or gradients for feature representation, we propose to use contour-based corners. First, curvature similarity between corners are for the first time explored for the purpose of multimodal image registration. Second, a novel local descriptor called Distribution of Edge Pixels Along Contour (DEPAC) is proposed to represent the edges in the neighborhood of corners. Third, a simple yet effective way of estimating scale difference is proposed by making use of geometric relationships between corner triplets from the reference and target images. Using a set of benchmark multimodal images and multimodal microscopic images, we will demonstrate that our proposed technique outperforms a state-of-the-art multimodal image registration technique.
               
Click one of the above tabs to view related content.