This article proposes an improved learning based super resolution scheme using manifold learning for texture images. Pseudo Zernike moment (PZM) has been employed to extract features from the texture images.… Click to show full abstract
This article proposes an improved learning based super resolution scheme using manifold learning for texture images. Pseudo Zernike moment (PZM) has been employed to extract features from the texture images. In order to efficiently retrieve similar patches from the training patches, feature similarity index matrix (FSIM) has been used. Subsequently, for reconstruction of the high resolution (HR) patch, a collaborative optimal weight is generated from the least square (LS) and non-negative matrix factorization (NMF) methods. The proposed method is tested on some color texture, gray texture, and some standard images. Results of the proposed method on texture images advocate its superior performance over established state-of-the-art methods.
               
Click one of the above tabs to view related content.