LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DIEDA: discriminative information based on exponential discriminant analysis combined with local features representation for face and kinship verification

Photo by strong18philip from unsplash

Face and kinship verification using facial images is a novel and challenging problem in computer vision. In this paper, we propose a new system that uses discriminative information, which is… Click to show full abstract

Face and kinship verification using facial images is a novel and challenging problem in computer vision. In this paper, we propose a new system that uses discriminative information, which is based on the exponential discriminant analysis (DIEDA) combined with multiple scale descriptors. The histograms of different patches are concatenated to form a high dimensional feature vector, which represents a specific descriptor at a given scale. The projected histograms for each zone use the cosine similarity metric to reduce the feature vector dimensionality. Lastly, zone scores corresponding to various descriptors at different scales are fused and verified by using a classifier. This paper exploits discriminative side information for face and kinship verification in the wild (image pairs are from the same person or not). To tackle this problem, we take examples of the face samples with unlabeled kin relations from the labeled face in the wild dataset as the reference set. We create an optimized function by minimizing the interclass samples (with a kin relation) and maximizing the neighboring interclass samples (without a kinship relation) with the DIEDA approach. Experimental results on three publicly available face and kinship datasets show the superior performance of the proposed system over other state-of-the-art techniques.

Keywords: information; kinship; kinship verification; face; face kinship

Journal Title: Multimedia Tools and Applications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.