LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust gait identification using Kinect dynamic skeleton data

Photo from wikipedia

Gait has been recently proposed as a biometric feature that, with respect to other human characteristics, can be captured at a distance without requiring the collaboration of the observed subject.… Click to show full abstract

Gait has been recently proposed as a biometric feature that, with respect to other human characteristics, can be captured at a distance without requiring the collaboration of the observed subject. Therefore, it turns out to be a promising approach for people identification in several scenarios, e.g. access control and forensic applications. In this paper, we propose an automatic gait recognition system based on a set of features acquired using the 3D skeletal tracking provided by the popular Kinect sensor. Gait features are defined in terms of distances between selected sets of joints and their vertical and lateral sway with respect to walking direction. Moreover we do not rely on any geometrical assumptions on the position of the sensor. The effectiveness of the defined gait features is shown in the case of person identification based on supervised classification, using the principal component analysis and the support vector machine. A rich set of experiments is provided in two scenarios: a controlled identification setup and a classical video-surveillance setting, respectively. Moreover, we investigate if gait can be considered invariant over time for an individual, at least in a time interval of few years, by comparing gait samples of several subjects three years apart. Our experimental analysis shows that the proposed method is robust to acquisition settings and achieves very competitive identification accuracy with respect to the state of the art.

Keywords: identification using; robust gait; using kinect; gait; identification; gait identification

Journal Title: Multimedia Tools and Applications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.