LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Feature-maximum-dependency-based fusion diagnosis method for COPD

Photo from wikipedia

Chronic Obstructive Pulmonary Disease (COPD) is a chronic lung disease that causes a progressive decline in respiratory function. COPD has become the fourth most lethal disease in the world, and… Click to show full abstract

Chronic Obstructive Pulmonary Disease (COPD) is a chronic lung disease that causes a progressive decline in respiratory function. COPD has become the fourth most lethal disease in the world, and worldwide deaths continue to become more common as a result of COPD. Therefore, it is important to help doctors diagnose COPD more accurately using big data analytics and effective algorithms. In the past, COPD was mainly studied as follows: applying data to determine the impact of a single feature on the disease, such as the effect of FEV1/FVC (forced expiratory volume in the first second/forced vital capacity), and analyzing a case with simple models, such as logistic regression or a support vector machine. Therefore, there are obviously deficiencies in previous studies. First, the impacts of multi-dimensional features on COPD have not been considered comprehensively. Second, there is no fusion of multiple study methods on the diagnosis and prognosis of COPD. Thus, this paper presents a feature-maximum-dependency-based fusion diagnosis method for COPD. First, the MDF-RS (feature maximum dependency-rough set) algorithm is proposed to extract the optimal combination of multi-dimensional features. Second, the integrated model DSA-SVM (direct search simulated annealing-support vector machine) is presented to classify the disease. Finally, the proposed method is experimentally tested. The results show that the algorithms outperform other classic methods.

Keywords: feature maximum; diagnosis; disease; copd; fusion; maximum dependency

Journal Title: Multimedia Tools and Applications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.