With the rapid growth of massive data in the Internet of Multimedia Things, there are some problems of insufficient storage space and unbalanced load in the current methods. For the… Click to show full abstract
With the rapid growth of massive data in the Internet of Multimedia Things, there are some problems of insufficient storage space and unbalanced load in the current methods. For the problem of massive real-time data storage, a distributed cluster storage optimization method is proposed. Considering the impact of replica cost and the generation of intermediate data on the replica layout, a replica generation and storage strategy is given with consideration of cost and storage space. In the data center, the data sensitivity and data access frequency is used as migration factors to achieve massive data migration. The improved collaborative evolution method is used to code the task scheduling particle swarm in massive data storage to obtain the optimal solution, and achieve massive real-time data distributed cluster storage for the Internet of things. The experimental results showed that the cost of data management by this method was only between 10 and 15, which showed that this method can effectively improve data access speed, reduce storage space, lower cost and better load balancing.
               
Click one of the above tabs to view related content.