LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ConvNets-based action recognition from skeleton motion maps

Photo by itfeelslikefilm from unsplash

With the advance of deep learning, deep learning based action recognition is an important research topic in computer vision. The skeleton sequence is often encoded into an image to better… Click to show full abstract

With the advance of deep learning, deep learning based action recognition is an important research topic in computer vision. The skeleton sequence is often encoded into an image to better use Convolutional Neural Networks (ConvNets) such as Joint Trajectory Maps (JTM). However, this encoding method cannot effectively capture long temporal information. In order to solve this problem, This paper presents an effective method to encode spatial-temporal information into color texture images from skeleton sequences, referred to as Temporal Pyramid Skeleton Motion Maps (TPSMMs), and Convolutional Neural Networks (ConvNets) are applied to capture the discriminative features from TPSMMs for human action recognition. The TPSMMs not only capture short temporal information, but also embed the long dynamic information over the period of an action. The proposed method has been verified and achieved the state-of-the-art results on the widely used UTD-MHAD, MSRC-12 Kinect Gesture and SYSU-3D datasets.

Keywords: action recognition; skeleton motion; based action; action

Journal Title: Multimedia Tools and Applications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.