A variety of methods applicable to the interconversion of static (creep) and dynamic (relaxation) functions, with regard to appropriate experimental data of various polymers is investigated and compared. The effectiveness… Click to show full abstract
A variety of methods applicable to the interconversion of static (creep) and dynamic (relaxation) functions, with regard to appropriate experimental data of various polymers is investigated and compared. The effectiveness of the selected methods was verified by a series of creep experimental data of various polymeric structures. While most of the employed methods are well established in the literature, some further modifications have been introduced for an improvement of the conversion procedure. Furthermore, a new approach is also employed, which is based on the stretched-exponential function, usually applied to represent both relaxation and retardation functions. It is seen that the examined methods produce a similar result, concerning the creep compliance function, having as a beginning storage and loss modulus experimental data. The same observation applies to the retardation spectra, pointing the fact that discrete spectra deviates significantly from the continuous spectra. As a result, it is shown that the creep compliance function, or the relaxation modulus function, can be predicted using experimental dynamic data (relaxation or creep, respectively), as well as anyone of the examined interconversion methods, with an accuracy close to 5%. The use of approximate or exact relations in the whole procedure was proved not to have a significant effect on the final result (referring mostly to the retardation spectra).
               
Click one of the above tabs to view related content.