LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparing double-step and penalty-based semirecursive formulations for hydraulically actuated multibody systems in a monolithic approach

Photo by omarprestwich from unsplash

The simulation of mechanical systems often requires modeling of systems of other physical nature, such as hydraulics. In such systems, the numerical stiffness introduced by the hydraulics can become a… Click to show full abstract

The simulation of mechanical systems often requires modeling of systems of other physical nature, such as hydraulics. In such systems, the numerical stiffness introduced by the hydraulics can become a significant aspect to consider in the modeling, as it can negatively effect to the computational efficiency. The hydraulic system can be described by using the lumped fluid theory. In this approach, a pressure can be integrated from a differential equation in which effective bulk modulus is divided by a volume size. This representation can lead to numerical stiffness as a consequence of which time integration of a hydraulically driven system becomes cumbersome. In this regard, the used multibody formulation plays an important role, as there are many different procedures for the constraint enforcement and different sets of coordinates to choose from. This paper introduces the double-step semirecursive approach and compares it with a penalty-based semirecursive approach in case of coupled multibody and hydraulic dynamics within the monolithic framework. To this end, hydraulically actuated four-bar and quick-return mechanisms are analyzed as case studies. The two approaches are compared in terms of the work cycle, energy balance, constraint violation, and numerical efficiency of the mechanisms. It is concluded that the penalty-based semirecursive approach has a number of advantages compared with the double-step semirecursive approach, which is in accordance with the literature.

Keywords: double step; based semirecursive; approach; penalty based; multibody

Journal Title: Multibody System Dynamics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.