This paper proposes a hybrid optimization algorithm named as BBO–PSO, which is a combination of biogeography-based optimization (BBO) and particle swarm optimization (PSO). In BBO–PSO, the whole population will be… Click to show full abstract
This paper proposes a hybrid optimization algorithm named as BBO–PSO, which is a combination of biogeography-based optimization (BBO) and particle swarm optimization (PSO). In BBO–PSO, the whole population will be split into several subgroups and BBO is employed for local search in each subgroup independently to achieve the different local optima while PSO is employed for global search based on the local optima to achieve the global optimum. The test results on the benchmark functions show that BBO–PSO has powerful search ability with great robustness. Furthermore, the proposed algorithm is applied to the design of the 2-D IIR digital filters and the simulation results show that it outperforms the existing methods on this problem.
               
Click one of the above tabs to view related content.