A subspace extension algorithm for two-dimensional (2D) direction-of-arrival (DOA) estimation with an L-shaped array is proposed. This L-shaped array is comprised of two orthogonal sparse linear arrays (SLAs). Each SLA… Click to show full abstract
A subspace extension algorithm for two-dimensional (2D) direction-of-arrival (DOA) estimation with an L-shaped array is proposed. This L-shaped array is comprised of two orthogonal sparse linear arrays (SLAs). Each SLA consists of two different uniform linear arrays. The cross-correlation matrix of received data is used to construct two extended signal subspaces, by which the azimuth angles and elevation angles can be estimated independently. The procedure used to extend signal subspace only needs a small amount of calculation. Then, an effective pair-matching method is addressed to pair the estimated elevation angles and azimuth angles. Although the signal subspaces are extended, the complexity of the proposed 2D DOA estimation algorithm is lower than many similar algorithms. Simulation results indicate the availability of the proposed pairing-matching method and subspace extension algorithm.
               
Click one of the above tabs to view related content.