Single target tracking is widely applied in the current surveillance systems. The Bernoulli filter can complete the task of single target tracking using available measurements. However, the existing Bernoulli filters… Click to show full abstract
Single target tracking is widely applied in the current surveillance systems. The Bernoulli filter can complete the task of single target tracking using available measurements. However, the existing Bernoulli filters have estimation bias during the whole tracking process. Therefore, we present an improved Bernoulli filter and its particle implementation in this paper. Employed the weight optimization strategy, the under-estimated number of target is corrected by enlarging the maximal measurement-updated weight of sampling particle. In addition, the track identification strategy is applied to optimize number of the required particles and extract the actual target. Combined with the unscented transform for the complicated dynamic models, the nonlinear motion state of maneuvering target is effectively estimated. Besides, we extend the proposed filter in unknown clutter environment and estimate the mean clutter rate, which has significant application meaning owing to avoiding the assumption of the given detection profile. Finally, the numerical simulations demonstrate the tracking advantages with the promising results in comparison to the standard Bernoulli filter.
               
Click one of the above tabs to view related content.