LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chebyshev approximation problem of multidimensional IIR digital filters in the frequency domain

Photo from wikipedia

This paper investigates the problem of simultaneous approximation of a prescribed multidimensional frequency response. The frequency responses of multidimensional IIR digital filters are used as nonlinear approximating functions. Chebyshev approximation… Click to show full abstract

This paper investigates the problem of simultaneous approximation of a prescribed multidimensional frequency response. The frequency responses of multidimensional IIR digital filters are used as nonlinear approximating functions. Chebyshev approximation theory and the notion of line homotopy are used to reveal the approximation properties of this set of IIR functions. A sign condition is derived to characterize a convex stable domain in this set. This sign condition can be incorporated into the optimization of the Chebyshev simultaneous approximation. The generally sufficient global Kolmogorov criterion is shown to be a necessary condition, for the characterization of best approximation, in the considered set of approximating functions. Thus, it can be incorporated, as a stopping constraint, in the design of the optimal filter. Moreover, the local Kolmogorov criterion is shown to be also necessary for the set of approximating functions. Finally, it is proved that the best approximation is a global minimum.

Keywords: chebyshev approximation; approximation; iir digital; multidimensional iir; digital filters; problem

Journal Title: Multidimensional Systems and Signal Processing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.