LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An uncertainty-set-shrinkage-based covariance matrix reconstruction algorithm for robust adaptive beamforming

Photo by niklas_hamann from unsplash

This paper presents an uncertainty-set-shrinkage (USS) algorithm that aims to reconstruct a precise interference-plus-noise covariance matrix (INCM) and improve the performance of adaptive beamformers when steering vector (SV) mismatch exists.… Click to show full abstract

This paper presents an uncertainty-set-shrinkage (USS) algorithm that aims to reconstruct a precise interference-plus-noise covariance matrix (INCM) and improve the performance of adaptive beamformers when steering vector (SV) mismatch exists. Both of the interference covariance matrix (ICM) and the desired signal covariance matrix (DSCM) can be divided into two parts, namely the nominal matrix reconstructed using the nominal SVs and the error matrix consisting of the residual component of the covariance matrix. By using a two-step uncertainty set shrinkage method, the proposed beamformer constructs the error matrices by integrating the estimated spatial spectrum over the shrinked uncertainty set at a cost of low computational complexity. After extracting the principal component of the reconstructed ICM and DSCM, the INCM and the SV of the source of interest (SOI) can be estimated without solving any optimization problem. Both of numerical simulations and experimental results demonstrate that the performance of the proposed algorithm is robust with several categories of SV mismatches.

Keywords: covariance matrix; matrix; uncertainty set; set shrinkage

Journal Title: Multidimensional Systems and Signal Processing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.