LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transforming single domain magnetic CoFe2O4 nanoparticles from hydrophobic to hydrophilic by novel mechanochemical ligand exchange

Photo by a2eorigins from unsplash

Single-phase uniform-sized (~9 nm) cobalt ferrite (CFO) nanoparticles have been synthesized by hydrothermal synthesis using oleic acid as a surfactant. The as-synthesized oleic acid-coated CFO (OA-CFO) nanoparticles were well dispersible in… Click to show full abstract

Single-phase uniform-sized (~9 nm) cobalt ferrite (CFO) nanoparticles have been synthesized by hydrothermal synthesis using oleic acid as a surfactant. The as-synthesized oleic acid-coated CFO (OA-CFO) nanoparticles were well dispersible in nonpolar solvents but not dispersible in water. The OA-CFO nanoparticles have been successfully transformed to highly water-dispersible citric acid-coated CFO (CA-CFO) nanoparticles using a novel single-step ligand exchange process by mechanochemical milling, in which small chain citric acid molecules replace the original large chain oleic acid molecules available on CFO nanoparticles. The OA-CFO nanoparticle’s hexane solution and CA-CFO nanoparticle’s water solution remain stable even after 6 months and show no agglomeration and their dispersion stability was confirmed by zeta-potential measurements. The contact angle measurement shows that OA-CFO nanoparticles are hydrophobic whereas CA-CFO nanoparticles are superhydrophilic in nature. The potentiality of as-synthesized OA-CFO and mechanochemically transformed CA-CFO nanoparticles for the demulsification of highly stabilized water-in-oil and oil-in-water emulsions has been demonstrated.

Keywords: cfo nanoparticles; water; ligand exchange; cfo; acid; nanoparticles hydrophobic

Journal Title: Journal of Nanoparticle Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.