LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Decay of electronic excitations in colloidal thioglycolic acid (TGA)-capped CdS/ZnS quantum dots

Photo by rocinante_11 from unsplash

Investigations of dynamics of exciton relaxation in colloidal thioglycolic acid (TGA)-capped CdS/ZnS core/shell systems with diameter of 3.6 nm by means of femtosecond transient absorption spectroscopy, thermostimulated luminescence (TSL), and… Click to show full abstract

Investigations of dynamics of exciton relaxation in colloidal thioglycolic acid (TGA)-capped CdS/ZnS core/shell systems with diameter of 3.6 nm by means of femtosecond transient absorption spectroscopy, thermostimulated luminescence (TSL), and decay of luminescence are presented in this paper. It was found that the intensity of trap-state luminescence increases when one and two ZnS monolayers are formed. Also, the lifetime of trap-state luminescence increases. Two types of trap states with different depths were found, using thermostimulated luminescence technique. Localized states of the first type with depth of 0.085 eV do not change their concentration during sell formation. In contrast, trap state of the second type with depth of 0.125 eV are almost completely removed. It was found that the electron lifetime, investigated femtosecond transient absorption is not changed during formation of ZnS shell. It was concluded that localized states are channels of non-radiative recombination, direct quenching the center of trap-state luminescence. The absence of exciton luminescence is caused by rapid localization of holes at luminescence center.

Keywords: colloidal thioglycolic; capped cds; acid tga; tga capped; luminescence; thioglycolic acid

Journal Title: Journal of Nanoparticle Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.