LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Carbon-encapsulated cobalt nanoparticles: synthesis, properties, and magnetic particle hyperthermia efficiency

Photo from wikipedia

A facile and low-cost method for structuring carbon-encapsulated cobalt nanoparticles (Co@C) is presented. Three samples were solvothermally prepared in one step at 220 °C and one in two steps at 200 °C.… Click to show full abstract

A facile and low-cost method for structuring carbon-encapsulated cobalt nanoparticles (Co@C) is presented. Three samples were solvothermally prepared in one step at 220 °C and one in two steps at 200 °C. Three different polyols such as propylene glycol, triethylene glycol, and tetraethylene glycol were used as carbon sources, solvents, and reducing agents. The samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. Concerning the crystal structure of the particles, a mixture of hcp/fcc Co phases was obtained in three of the samples, independently of the polyol used. The coexistence of cubic and hexagonal phases was revealed both from XRD and high-resolution TEM (HRTEM). The formation of the cubic fcc structure, despite the relatively low reaction temperature, is attributed to the role of the interface between carbon coating and metallic core. The presence of carbon coating was demonstrated by Raman spectrometry, exhibiting the characteristic D and G graphitic bands, and by HRTEM observations. All samples showed ferromagnetic behavior with saturation magnetization up to 158 emu/g and coercivity up to 206 Oe. From the magnetic particle hyperthermia measurements recorded at a frequency of 765 kHz, a maximum SLP value of 241 W/g was obtained.

Keywords: encapsulated cobalt; carbon; magnetic particle; cobalt nanoparticles; carbon encapsulated; particle hyperthermia

Journal Title: Journal of Nanoparticle Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.