LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Immobilization of silver nanoparticles in Zr-based MOFs: induction of apoptosis in cancer cells

Photo by nci from unsplash

AbstractSilver nanoparticles (AgNPs) are a potential class of nanomaterial for antibiosis and chemotherapeutic effects against human carcinoma cells. However, the DNA-damaging ability of free AgNPs pose the critical issues in… Click to show full abstract

AbstractSilver nanoparticles (AgNPs) are a potential class of nanomaterial for antibiosis and chemotherapeutic effects against human carcinoma cells. However, the DNA-damaging ability of free AgNPs pose the critical issues in their biomedical applications. Herein, we demonstrated a facile method to capture Ag+ ions and reduce them into active AgNPs within Zr-based metal-organic frameworks (MOFs) of UiO-66 with a mild reductant of DMF (AgNPs@UiO-66(DMF)). The average diameters of UiO-66 carriers and AgNPs were facilely controlled to be 140 and 10 nm, respectively. The obtained UiO-66 nanocarriers exhibited excellent biocompatibility and could be effectively endocytosed by cancer cells. Additionally, the AgNPs@UiO-66(DMF) could rapidly release Ag+ ions and efficiently inhibit the growth of cancer cells. The half maximal inhibitory concentration (IC50) values of the encapsulated AgNPs were calculated to be 2.7 and 2.45 μg mL−1 for SMMC-7721 and HeLa cells, respectively, which were much lower than those of free AgNPs in the reported works. Therefore, the developed AgNPs@UiO-66(DMF) not only maintained the therapeutic effect against cancer cells but also reduced the dosage of free AgNPs in chemotherapy treatment. Graphical abstractA mild reduction process was developed for the fabrication of AgNPs@UiO-66, which exhibited efficient induction of apoptosis in cancer cells.

Keywords: agnps uio; apoptosis cancer; induction apoptosis; cancer cells; cancer

Journal Title: Journal of Nanoparticle Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.