LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Morphomechanical and organelle perturbation induced by silver nanoparticle exposure

Photo from archive.org

The unique physico-chemical properties of silver nanoparticles (AgNPs) make them a powerful tool in many fields, ranging from cosmetics, biomedicals, household products, and wound dressing. Several evidences suggest the strong… Click to show full abstract

The unique physico-chemical properties of silver nanoparticles (AgNPs) make them a powerful tool in many fields, ranging from cosmetics, biomedicals, household products, and wound dressing. Several evidences suggest the strong toxicity of AgNPs both in vitro and in vivo, but few data are available to full understanding of their adverse effects on cellular components and cytoskeleton. In this work, we assessed the toxicity of citrate-capped AgNPs on cortical actin and organelles, namely mitochondria and lysosomes, on epithelial breast cancer cells (MCF-7). The impact of AgNPs on cells was firstly evaluated in term of viability, oxidative stress, mitochondria membrane potential alteration, and apoptosis activation. Afterwards, we carefully estimated the qualitative and quantitative morphological alterations of cortical F-actin and organelles by confocal microscopy and specific software tools, coupled with a biomechanical analysis by atomic force microscopy (AFM). This multidisciplinary approach, which combines the standard biological assays with systematic morphometric and biomechanical analysis on cells, permits to understand at different levels the intracellular response elicited by AgNPs in order to provide new scenarios in toxicity assessment.

Keywords: microscopy; nanoparticle; morphomechanical organelle; induced silver; perturbation induced; organelle perturbation

Journal Title: Journal of Nanoparticle Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.