LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Two-Stage Bayesian Integration Framework for Salient Object Detection on Light Field

Photo from wikipedia

Unique visual features of 4D light field data have been shown to affect detection of salient objects. Nevertheless, only a few studies explore it yet. In this study, several helpful… Click to show full abstract

Unique visual features of 4D light field data have been shown to affect detection of salient objects. Nevertheless, only a few studies explore it yet. In this study, several helpful visual features extracted from light field data are fused in a two-stage Bayesian integration framework for salient object detection. First, background weighted color contrast is computed in high dimensional color space, which is more distinctive to identify object of interest. Second, focusness map of foreground slice is estimated. Then, it is combined with the color contrast results via first-stage Bayesian fusion. Third, background weighted depth contrast is computed. Depth contrast has been proved to be an extremely useful cue for salient object detection and complementary to color contrast. Finally, in the second-stage Bayesian fusion step, the depth-induced contrast saliency is further fused with the first-stage saliency fusion results to get the final saliency map. Experiments of comparing with eight existing state-of-the-art methods on light field benchmark datasets show that the proposed method can handle challenging scenarios such as cluttered background, and achieves the most visually acceptable salient object detection results.

Keywords: detection; salient; salient object; stage bayesian; light field

Journal Title: Neural Processing Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.