LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Learning Multi-level Deep Representations for Image Emotion Classification

Photo from wikipedia

In this paper, we propose a new deep network that learns multi-level deep representations for image emotion classification (MldrNet). Image emotion can be recognized through image semantics, image aesthetics and… Click to show full abstract

In this paper, we propose a new deep network that learns multi-level deep representations for image emotion classification (MldrNet). Image emotion can be recognized through image semantics, image aesthetics and low-level visual features from both global and local views. Existing image emotion classification works using hand-crafted features or deep features mainly focus on either low-level visual features or semantic-level image representations without taking all factors into consideration. The proposed MldrNet combines deep representations of different levels, i.e. image semantics, image aesthetics and low-level visual features to effectively classify the emotion types of different kinds of images, such as abstract paintings and web images. Extensive experiments on both Internet images and abstract paintings demonstrate the proposed method outperforms the state-of-the-art methods using deep features or hand-crafted features. The proposed approach also outperforms the state-of-the-art methods with at least 6% performance improvement in terms of overall classification accuracy.

Keywords: image; classification; deep representations; level; image emotion; emotion

Journal Title: Neural Processing Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.