Trans-cinnamaldehyde (CNM) has recently drawn attention due to its potent anti-inflammatory and antioxidant properties. The current study explored the memory enhancing effects of CNM against lipopolysaccharide (LPS)-induced neuroinflammation in mice.… Click to show full abstract
Trans-cinnamaldehyde (CNM) has recently drawn attention due to its potent anti-inflammatory and antioxidant properties. The current study explored the memory enhancing effects of CNM against lipopolysaccharide (LPS)-induced neuroinflammation in mice. CNM and curcumin (a reference antioxidant) were administered at a dose of 50 mg/kg i.p. 3 h after a single LPS injection (0.8 mg/kg, i.p.) and continued daily for 7 days. Our results displayed that CNM and curcumin significantly ameliorated the LPS-induced impairment of learning and memory, neuroinflammation, oxidative stress and neuronal apoptosis. Memory functions and locomotor activity were assessed by Morris water maze, object recognition test and open field test. Both CNM and curcumin activated the nuclear factor erythroid 2 related factor 2 (Nrf2) and restored levels of downstream antioxidant enzymes superoxide dismutase and glutathione-S-transferase (GST) in the hippocampus. They also attenuated LPS-induced increase in hippocampal contents of interleukin-1β (IL-1β), malondialdehyde and caspase-3. Immunohistochemistry results showed that both CNM and curcumin reduced Aβ1–42 protein accumulation in brain of mice. Remarkably CNM’s effect on IL-1β was less pronounced than curcumin; however it showed higher GST activity and more potent anti-apoptotic and anti-amylodogenic effect. We conclude that, CNM produces its memory enhancing effects through modulation of Nrf2 antioxidant defense in hippocampus, inhibition of neuroinflammation, apoptosis and amyloid protein burden.
               
Click one of the above tabs to view related content.