LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inhibition of TNFR1 Attenuates LPS Induced Apoptosis and Inflammation in Human Nucleus Pulposus Cells by Regulating the NF-KB and MAPK Signalling Pathway.

Photo from wikipedia

Intervertebral disc degeneration (IDD) is accompanied by nucleus pulposus (NP) cell apoptosis, inflammation, and extracellular matrix degradation. Tumour necrosis factor receptor 1 (TNFR1) is a receptor of TNF-α, and is… Click to show full abstract

Intervertebral disc degeneration (IDD) is accompanied by nucleus pulposus (NP) cell apoptosis, inflammation, and extracellular matrix degradation. Tumour necrosis factor receptor 1 (TNFR1) is a receptor of TNF-α, and is deeply involved in the processes of IDD. However, the effect of TNFR1 inhibition on IDD is not clear. Herein, we report that TNFR1 was increased in LPS-treated HNPCs. The aim of this study was to investigate the potential therapeutic effect of TNFR1 siRNA and selective antagonists of TNFR1 (GSK1995057) on HNPC damage. The results showed that the blockade of TNFR1 by TNFR1 siRNA and GSK1995057 effectively suppressed the cell viability loss, apoptosis, and inflammation induced by LPS in HNPCs. Furthermore, we found that TNFR1 siRNA and GSK1995057 inhibited activation of the NF-KB and MAPK signalling pathways in LPS-stimulated HNPCs. In summary, the blockade of TNFR1 effectively suppressed LPS-induced apoptosis and inflammation in HNPCs through the NF-KB and MAPK signalling pathways. This revealed that the blockade of TNFR1 may provide a potential therapeutic treatment for IDD.

Keywords: tnfr1; mapk signalling; apoptosis inflammation

Journal Title: Neurochemical research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.