LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Large wood transport modelling by a coupled Eulerian–Lagrangian approach

Photo by diggity_dog from unsplash

The paper discusses a model which predicts the trajectory of floating rigid bodies and may be applied to compute the motion of woody “debris” mobilized during floods. The model couples… Click to show full abstract

The paper discusses a model which predicts the trajectory of floating rigid bodies and may be applied to compute the motion of woody “debris” mobilized during floods. The model couples a Discrete Element (DE) Lagrangian approach for the calculation of motion of rigid bodies with the Eulerian solution of the shallow water equations (SWE), in order to simulate the transport of a cylinder in a two-dimensional stream. It differs from existing models since it is based on a dynamic approach, adapting the Basset–Boussinesq–Oseen equation. In a first step, forces are computed from flow and log velocities; then, the equations of dynamics are solved to model the planar roto-translation of the body. Model results and physical reliability are clearly affected by the values of the drag and side coefficients, especially since logs, modelled as cylinders, are able to change their orientation towards the flow. Experimental studies to evaluate drag and side coefficients can be found in the literature for a submerged cylinder, with various orientations. To extend such results to the case of a floating log, the authors performed a series of laboratory tests on partially submerged cylinders, implementing the outcomes in the proposed DE-SWE model. The coupled model is validated against existing laboratory data concerning spheres and wooden cylinder transport.

Keywords: lagrangian approach; wood transport; model; large wood; approach

Journal Title: Natural Hazards
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.