LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrodynamic modeling of flash flood in mountain watersheds based on high-performance GPU computing

Photo from wikipedia

Numerical accuracy and computational efficiency are the two key factors for flash flood simulation. In this paper, a two-dimensional fully hydrodynamic model is presented for the simulation of flash floods… Click to show full abstract

Numerical accuracy and computational efficiency are the two key factors for flash flood simulation. In this paper, a two-dimensional fully hydrodynamic model is presented for the simulation of flash floods in mountain watersheds. A robust finite volume scheme is adopted to accurately simulate the overland flow with wet/dry fronts on highly irregular topography. A graphics processing unit-based parallel method using OpenACC is adopted to realize high-performance computing and then improve the computational efficiency. Since the finite volume scheme is explicit which involves many computationally intensive loop structures without data dependence, the parallel flash flood model can be easily realized by using OpenACC directives in an incremental developing way based on the serial model codes, except that data structure and transportation should be optimized for parallel algorithm. Model accuracy is validated by benchmark cases with exact solutions and experimental data. To further analyze the performance of the model, we considered a real flash flooding-prone area in China using a NVIDIA Tesla K20c card and three grid division schemes with different resolution. Results show that the proposed model can fast simulate the rainfall−runoff process related to the rapid mountain watersheds response, and a higher speedup ratio can be achieved for finer grids resolution. The proposed model can be used for real-time prediction of large-scale flash flood on high-resolution grids and thus has bright application prospects.

Keywords: model; mountain watersheds; high performance; flash flood

Journal Title: Natural Hazards
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.