LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Atmospheric circulation conditions during winter warm spells in Central Europe

Photo from wikipedia

The objective of the paper was to characterise the temporal and spatial variability of winter warm spells in Central Europe in the years 1966/1967–2015/2016 and to determine the circulation conditions… Click to show full abstract

The objective of the paper was to characterise the temporal and spatial variability of winter warm spells in Central Europe in the years 1966/1967–2015/2016 and to determine the circulation conditions of their occurrence. The applied data were obtained from the Polish Institute of Meteorology and Water Management, Deutscher Wetterdienst and the National Centre for Environmental Prediction/National Centre for Atmospheric Research. A warm spell was defined as a sequence of at least three warm days, i.e. when the maximum air temperature is higher than the 95th percentile of the probability density function designated from observation. The research has proven that over the study period the air temperature increased in the winter season in Central Europe and this translated into an increase in the number of warm days. An average of 3–5 warm spells was recorded per 10 years. The most numerous warm spells occurred during three winter seasons, i.e. 1989/1990, 2006/2007 and 2015/2016. The occurrence of warm spells was related to positive anomalies of geopotential heights over the study area in the cross section of the entire troposphere. Maximum anomalies appeared at 250 hPa geopotential height, and they developed on average 9 days before the commencement of warm spells over the study area.

Keywords: winter warm; spells central; warm spells; central europe; circulation conditions

Journal Title: Natural Hazards
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.