LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust adaptive self-organizing neuro-fuzzy tracking control of UUV with system uncertainties and unknown dead-zone nonlinearity

Photo by timothycdykes from unsplash

In this paper, a robust adaptive self-organizing neuro-fuzzy control (RASNFC) scheme for tracking of unmanned underwater vehicle with uncertainties and the unknown dead-zone nonlinearity is proposed. The proposed RASNFC scheme… Click to show full abstract

In this paper, a robust adaptive self-organizing neuro-fuzzy control (RASNFC) scheme for tracking of unmanned underwater vehicle with uncertainties and the unknown dead-zone nonlinearity is proposed. The proposed RASNFC scheme comprises an estimation-based adaptive controller (EBAC) using a self-organizing neuro-fuzzy network (SNFN) and a robust controller. The EBAC controller is constructed with a novel sliding mode reaching law control framework, and the unknown dynamic function is identified by the SNFN approximator which is able to online self-construct a neuro-fuzzy network with dynamic structure by generating and pruning fuzzy rule. The robust controller is employed to provide the finite $$L_{2}$$L2-gain property to cope with reconstruction errors such that the robustness of the entire closed-loop control system is enhanced. Theoretical analysis shows that tracking errors and their derivatives are asymptotically stable and all signals in the closed-loop system are bounded. Comparative simulation results demonstrate the effectiveness and superiority of the proposed RASNFC scheme.

Keywords: robust adaptive; system; neuro fuzzy; control; self organizing; organizing neuro

Journal Title: Nonlinear Dynamics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.