We study the bifurcation characteristics of a lumped-parameter model of rotary drilling with 1:1 internal resonance between the axial and the torsional modes which leads to the largest stability thresholds.… Click to show full abstract
We study the bifurcation characteristics of a lumped-parameter model of rotary drilling with 1:1 internal resonance between the axial and the torsional modes which leads to the largest stability thresholds. For this special case, the two-degree-of-freedom model for the drill-string reduces to an effectively single-degree-of-freedom system facilitating further analysis. The regenerative effect of the cutting action due to the axial vibrations is incorporated through a delayed term in the cutting force with the delay depending on the torsional oscillations. This state dependency of the delay introduces nonlinearity in the current model. Steady drilling loses stability via a Hopf bifurcation, and the nature of the bifurcation is determined by an analytical study using the method of multiple scales. We find that both subcritical and supercritical Hopf bifurcations are present in this system depending on the choice of operating parameters. Hence, the nonlinearity due to the state-dependent delay term could both be stabilizing or destabilizing in nature, and the self-interruption nonlinearity is essential to capture the global behavior. Numerical bifurcation analysis of a global axial–torsional model of rotary drilling further confirms the analytical results from the method of multiple scales. Further exploration of the rotary drilling dynamics unravels more complex phenomena including grazing bifurcations and possibly chaotic solutions.
               
Click one of the above tabs to view related content.