LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparing the direct normal form and multiple scales methods through frequency detuning

Photo by spacex from unsplash

Approximate analytical methods, such as the multiple scales (MS) and direct normal form (DNF) techniques, have been used extensively for investigating nonlinear mechanical structures, due to their ability to offer… Click to show full abstract

Approximate analytical methods, such as the multiple scales (MS) and direct normal form (DNF) techniques, have been used extensively for investigating nonlinear mechanical structures, due to their ability to offer insight into the system dynamics. A comparison of their accuracy has not previously been undertaken, so is addressed in this paper. This is achieved by computing the backbone curves of two systems: the single-degree-of-freedom Duffing oscillator and a non-symmetric, two-degree-of-freedom oscillator. The DNF method includes an inherent detuning, which can be physically interpreted as a series expansion about the natural frequencies of the underlying linear system and has previously been shown to increase its accuracy. In contrast, there is no such inbuilt detuning for MS, although one may be, and usually is, included. This paper investigates the use of the DNF detuning as the chosen detuning in the MS method as a way of equating the two techniques, demonstrating that the two can be made to give identical results up to $$\varepsilon ^2$$ε2 order. For the examples considered here, the resulting predictions are more accurate than those provided by the standard MS technique. Wolfram Mathematica scripts implementing these methods have been provided to be used in conjunction with this paper to illustrate their practicality.

Keywords: normal form; form multiple; direct normal; multiple scales; comparing direct

Journal Title: Nonlinear Dynamics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.