One- and two-soliton analytical solutions of a fifth-order nonlinear Schrödinger equation with variable coefficients are derived by means of the Hirota bilinear method in this paper. Various scenarios of one-soliton… Click to show full abstract
One- and two-soliton analytical solutions of a fifth-order nonlinear Schrödinger equation with variable coefficients are derived by means of the Hirota bilinear method in this paper. Various scenarios of one-soliton shaping and two-soliton interaction and reshaping are investigated, using the obtained exact solutions and adjusting parameters of the underlying model. We find that widths of two colliding solitons can change without changing their amplitudes. Furthermore, we produce a solution in which two originally bound solitons are separated and are then moving in opposite directions. We also show that two colliding solitons can fuse to form a spatiotemporal train, composed of equally separated identical pulses. Moreover, we display that the width and propagation direction of the spatiotemporal train can change simultaneously. Effects of corresponding parameters on the one-soliton shaping and two-soliton interaction are discussed. Results of this paper may be beneficial to the application of optical self-routing, switching and path control.
               
Click one of the above tabs to view related content.