In this present work, the dynamic behavior of a pneumatic artificial muscle (PAM) has been studied by varying different muscle parameters and air pressure into it. The governing equation of… Click to show full abstract
In this present work, the dynamic behavior of a pneumatic artificial muscle (PAM) has been studied by varying different muscle parameters and air pressure into it. The governing equation of motion has been derived using Newton’s law of motion to study the various responses in the system at principal parametric resonance condition. The temporal equation of motion contains various nonlinear parameters with forced and nonlinear parametric excitation. Then, the second-order method of multiple scales is used to find the approximate solutions and to study the dynamic stability and bifurcations of the system. The results are found to be in good agreement with the solutions obtained by solving the temporal equation of motion numerically. The instability regions by varying different system parameters have been plotted. The time responses and phase portraits have been plotted to study the system behavior with the nonlinearity. The influences of the different system parameters in the amplitude for the muscle have also been studied with the help frequency responses. In order to verify the solution, the basin of attraction has also been plotted. The obtained results will be very useful for designing the desired PAM use in different rehabilitation robotics and exoskeleton system.
               
Click one of the above tabs to view related content.