LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inverse stochastic resonance in Hodgkin–Huxley neural system driven by Gaussian and non-Gaussian colored noises

Photo from wikipedia

Inverse stochastic resonance (ISR) is the phenomenon of the response of neuron to noise, which is opposite to the conventional stochastic resonance. In this paper, the ISR phenomena induced by… Click to show full abstract

Inverse stochastic resonance (ISR) is the phenomenon of the response of neuron to noise, which is opposite to the conventional stochastic resonance. In this paper, the ISR phenomena induced by Gaussian and non-Gaussian colored noises are studied in the cases of single Hodgkin–Huxley (HH) neuron and HH neural network, respectively. It is found that the mean firing rate of electrical activities depends on the Gaussian or non-Gaussian colored noises which can induce the phenomenon of ISR. The ISR phenomenon induced by Gaussian colored noise is most obvious under the conditions of low external current, low reciprocal correlation rate and low noise level. The ISR in neural network is more pronounced and lasts longer than the duration of a single neuron. However, the ISR phenomenon induced by non-Gaussian colored noise is apparent under low noise correlation time or low departure from Gaussian noise, and the ISR phenomena show different duration ranges under different parameter values. Furthermore, the transition of mean firing rate is more gradual, the ISR lasts longer, and the ISR phenomenon is more pronounced under the non-Gaussian colored noise. The ISR is a common phenomenon in neurodynamics; our results might provide novel insights into the ISR phenomena observed in biological experiments.

Keywords: phenomenon; isr; stochastic resonance; non gaussian; noise; gaussian colored

Journal Title: Nonlinear Dynamics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.