LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generalized Modal Amplitude Stability Analysis for the prediction of the nonlinear dynamic response of mechanical systems subjected to friction-induced vibrations

Photo from wikipedia

The numerical prediction of the dynamic behaviour of mechanical systems subjected to friction-induced vibrations is still a tedious problem. Different methodologies exist nowadays to study it. The first one is… Click to show full abstract

The numerical prediction of the dynamic behaviour of mechanical systems subjected to friction-induced vibrations is still a tedious problem. Different methodologies exist nowadays to study it. The first one is the complex eigenvalue analysis, which is widely used by the scientists and the industrials to predict the appearance of instabilities despite its disadvantages. Other methodologies, namely temporal integration and frequential approaches, have been developed to determine the transient and/or the steady-state response to assess the history of the dynamic response, and so to identify the unstable modes involved in the nonlinear dynamic response as well as the vibration levels. However, because of their complex implementation, their high numerical cost and sometimes the strong assumptions made on the form of the solutions, these methods are not widely and currently used in industry. To cope with the limitations of the CEA, namely the over- or under-predictability and the lack of information about modal participations in the nonlinear dynamic response, developing complementary tools is necessary. Thus, this paper is devoted to the extension and generalization of a nonlinear approach, called the modal amplitude stability analysis, to the multi-instability case. The method, called the Generalized Modal Amplitude Stability Analysis (GMASA), allows to identify the evolutions and contributions of unstable modes involved in the nonlinear self-sustaining vibration response and to estimate the limit cycles. The method is applied on a phenomenological system for which it is easy to provide an understanding of the unstable mode(s) contribution to the nonlinear dynamic response of the system and for which the calculations can be performed with reasonable computational times. Thus, the efficiency and validity of the GMASA approach are investigated by comparing the GMASA results with those of the reference results based on temporal approach.

Keywords: nonlinear dynamic; response; analysis; amplitude stability; modal amplitude; dynamic response

Journal Title: Nonlinear Dynamics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.