A new adaptive neural control method, with the actuators multiple constraints of amplitude and rate into consideration, is proposed in this paper for the flexible air-breathing hypersonic vehicle (AHV). In… Click to show full abstract
A new adaptive neural control method, with the actuators multiple constraints of amplitude and rate into consideration, is proposed in this paper for the flexible air-breathing hypersonic vehicle (AHV). In order to better reflect the characteristics of the actual AHV model, we regard the AHV as a completely unknown non-affine system in the control law design process, which is different from the existing AHV control methods, thus ensuring the reliability of the designed control law. On the basis of the implicit function theorem, the radial basis function neural network (RBFNN) is introduced to approximate the model. Meanwhile, the minimum learning parameter algorithm is adopted to adaptively adjust the weight vector of RBFNN, then the design of the ideal control law is completed. When the amplitude and rate of the actuator are saturated, the designed novel auxiliary error compensation system is used to effectively compensate for the ideal control law, and the stability of the closed-loop control system is proved via the Lyapunov stability theory. In addition, to avoid the “explosion of terms” problem in the control law design process, the finite-time-convergence-differentiator is introduced to accurately estimate the differential signal. Finally, the effectiveness of the control method designed in this paper is verified by simulation.
               
Click one of the above tabs to view related content.