In this paper, the optimal formation and optimal matching of a multi-robot system are investigated with a projection-based algorithm designed to get the optimal formation moving in real time. The… Click to show full abstract
In this paper, the optimal formation and optimal matching of a multi-robot system are investigated with a projection-based algorithm designed to get the optimal formation moving in real time. The formation-related optimization problem is proposed under the consideration of two cases: the free formation and the formation with anchor(s). For the latter, equality constraints are formulated for the anchor, and the objective of the optimal formation is to minimize the total distance to the initial formation of the multi-robot system. Here, the objective function with mixed norm is considered to get a compact formation. Sufficient conditions on the design parameter for global convergence of the proposed algorithm are provided in the theoretical results. Furthermore, the projection particle swarm optimizer is investigated for getting the optimal matching between the initial/intermediate formation and the optimal formation. Finally, simulations on several numerical examples are presented to validate the effectiveness of the proposed method.
               
Click one of the above tabs to view related content.