LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vaccination control of an epidemic model with time delay and its application to COVID-19

Photo by thinkmagically from unsplash

This paper studies an SEIR-type epidemic model with time delay and vaccination control. The vaccination control is applied when the basic reproduction number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs}… Click to show full abstract

This paper studies an SEIR-type epidemic model with time delay and vaccination control. The vaccination control is applied when the basic reproduction number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0>1$$\end{document}R0>1. The vaccination strategy is expressed as a state delayed feedback which is related to the current and previous state of the epidemic model, and makes the model become a linear system in new coordinates. For the presence and absence of vaccination control, we investigate the nonnegativity and boundedness of the model, respectively. We obtain some sufficient conditions for the eigenvalues of the linear system such that the nonnegativity of the epidemic model can be guaranteed when the vaccination strategy is applied. In addition, we study the stability of disease-free equilibrium when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0<1$$\end{document}R0<1 and the persistent of disease when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0>1$$\end{document}R0>1. Finally, we use the obtained theoretical results to simulate the vaccination strategy to control the spread of COVID-19.

Keywords: epidemic model; usepackage; vaccination; vaccination control

Journal Title: Nonlinear Dynamics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.