This paper focuses on the decentralized finite-time prescribed performance control problem for a class of large-scale nonlinear interconnected systems with input dead zone using an adaptive fuzzy approach. Specifically, fuzzy… Click to show full abstract
This paper focuses on the decentralized finite-time prescribed performance control problem for a class of large-scale nonlinear interconnected systems with input dead zone using an adaptive fuzzy approach. Specifically, fuzzy logic systems are utilized to approximate unknown nonlinear system functions and a finite-time prescribed performance control scheme is designed by taking advantage of both the adaptive technique and backstepping scheme. By introducing two smooth functions and utilizing the command filter backstepping design, the ‘explosion of complexity’ problem inherent in the conventional backstepping control is overcome, while the associated problems due to unknown interconnections are solved. The proposed control scheme guarantees that all signals within the closed-loop controlled system are bounded and the output tracking error falls within a small range predefined by the prescribed performance within a finite time. Two simulation examples are given to verify the high effectiveness of the presented control approach.
               
Click one of the above tabs to view related content.