In this paper, we investigate the generalized eigenvalue problem Ax = λBx arising from economic models. Under certain conditions, there is a simple generalized eigenvalue ρ(A, B) in the interval… Click to show full abstract
In this paper, we investigate the generalized eigenvalue problem Ax = λBx arising from economic models. Under certain conditions, there is a simple generalized eigenvalue ρ(A, B) in the interval (0, 1) with a positive eigenvector. Based on the Noda iteration, a modified Noda iteration (MNI) and a generalized Noda iteration (GNI) are proposed for finding the generalized eigenvalue ρ(A, B) and the associated unit positive eigenvector. It is proved that the GNI method always converges and has a quadratic asymptotic convergence rate. So GNI has a similar convergence behavior as MNI. The efficiency of these algorithms is illustrated by numerical examples.
               
Click one of the above tabs to view related content.