LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A tangential method for the balanced truncation in model reduction

Photo from archive.org

In this paper, we present a new approach for large-scale Lyapunov matrix equations, where we present two algorithms named: Adaptive Block Tangential Lanczos-type and Arnoldi-type algorithms (ABTL and ABTA). This… Click to show full abstract

In this paper, we present a new approach for large-scale Lyapunov matrix equations, where we present two algorithms named: Adaptive Block Tangential Lanczos-type and Arnoldi-type algorithms (ABTL and ABTA). This approach is based on the projection of the initial problem onto tangential Krylov subspaces to produce a low-rank approximate solution of large Lyapunov equations. These approximations are used in model reduction of large-scale dynamical systems with multiple inputs and multiple outputs (MIMO). We give some algebraic properties and present some numerical experiences to show the effectiveness of the proposed algorithms.

Keywords: method balanced; tangential method; model; model reduction; balanced truncation

Journal Title: Numerical Algorithms
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.