LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Isogeometric analysis for time-fractional partial differential equations

Photo from wikipedia

We consider isogeometric analysis to solve the time-fractional partial differential equations: fractional diffusion and diffusion-wave equations. Traditional spatial discretization for time-fractional models include finite differences, finte elements, spectral methods, etc.… Click to show full abstract

We consider isogeometric analysis to solve the time-fractional partial differential equations: fractional diffusion and diffusion-wave equations. Traditional spatial discretization for time-fractional models include finite differences, finte elements, spectral methods, etc. A novel method-isogeometric analysis is used for spatial discretization in this paper. The traditional L1 scheme and L2 scheme are used for time discretization of our models. Isogeometric analysis has potential advantages in exact geometry representations, efficient mesh generation, h- and k- refinements, and smooth basis functions. We show stability and a priori error estimates for spatial discretization and the space-time fully discrete scheme. A variety of numerical examples in 2d and 3d are provided to verify theory and show accuracy, efficiency, and convergence of isogeometric analysis based on B-splines and non-uniform rational B-splines.

Keywords: fractional partial; partial differential; time fractional; analysis; isogeometric analysis

Journal Title: Numerical Algorithms
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.