We consider isogeometric analysis to solve the time-fractional partial differential equations: fractional diffusion and diffusion-wave equations. Traditional spatial discretization for time-fractional models include finite differences, finte elements, spectral methods, etc.… Click to show full abstract
We consider isogeometric analysis to solve the time-fractional partial differential equations: fractional diffusion and diffusion-wave equations. Traditional spatial discretization for time-fractional models include finite differences, finte elements, spectral methods, etc. A novel method-isogeometric analysis is used for spatial discretization in this paper. The traditional L1 scheme and L2 scheme are used for time discretization of our models. Isogeometric analysis has potential advantages in exact geometry representations, efficient mesh generation, h- and k- refinements, and smooth basis functions. We show stability and a priori error estimates for spatial discretization and the space-time fully discrete scheme. A variety of numerical examples in 2d and 3d are provided to verify theory and show accuracy, efficiency, and convergence of isogeometric analysis based on B-splines and non-uniform rational B-splines.
               
Click one of the above tabs to view related content.