In the present paper, we consider the semilocal convergence problems of the two-step Newton method for solving nonlinear operator equation in Banach spaces. Under the assumption that the first derivative… Click to show full abstract
In the present paper, we consider the semilocal convergence problems of the two-step Newton method for solving nonlinear operator equation in Banach spaces. Under the assumption that the first derivative of the operator satisfies a generalized Lipschitz condition, a new semilocal convergence analysis for the two-step Newton method is presented. The Q-cubic convergence is obtained by an additional condition. This analysis also allows us to obtain three important spacial cases about the convergence results based on the premises of Kantorovich, Smale and Nesterov-Nemirovskii types. An application of our convergence results is to the approximation of minimal positive solution for a nonsymmetric algebraic Riccati equation arising from transport theory.
               
Click one of the above tabs to view related content.