LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simulation and optimization of 2.6–2.8 μm GaSb-based VCSELs

Photo from archive.org

We present the simulation results of threshold operation of mid-infrared GaSb-based vertical-cavity surface-emitting lasers (VCSELs) obtained with the use of comprehensive fully self-consistent optical-electrical-thermal-recombination numerical model. The results show that… Click to show full abstract

We present the simulation results of threshold operation of mid-infrared GaSb-based vertical-cavity surface-emitting lasers (VCSELs) obtained with the use of comprehensive fully self-consistent optical-electrical-thermal-recombination numerical model. The results show that by a proper design of VCSEL structure and composition of the active region it is theoretically possible to achieve room-temperature (RT) threshold operation for wavelength of 2.8 μm which is about 0.2 μm longer than those reported so far in the literature for III-V VCSELs with type-I quantum wells. Calculated values of the RT threshold current were equal to 2.5 and 4.0 mA for tunnel-junction diameters of 2 and 4 μm, respectively.

Keywords: simulation optimization; optimization gasb; based vcsels; simulation; gasb based

Journal Title: Optical and Quantum Electronics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.