We investigate the switching between two surface plasmon polariton modes in a non-Hermitian system composed of a pair of graphene sheets using topological operations. The topological operation is implemented by… Click to show full abstract
We investigate the switching between two surface plasmon polariton modes in a non-Hermitian system composed of a pair of graphene sheets using topological operations. The topological operation is implemented by suitably designing the waveguide geometry and the chemical potential of graphene, which is equivalent to changing the system parameters along a closed loop in the parameter space. Efficient and robust mode switching takes place as the loop encloses an exceptional point and the wave experiences a sufficiently large propagation length. Moreover, we show this mode switching is chiral, in the sense that the output modes are different for choosing different loop directions. The study provides a promising approach to robust mode switching on a deep-subwavelength scale.
               
Click one of the above tabs to view related content.